
Case Studies in Alternate Uses of Biomethane from Wastewater Treatment Plants and Landfill Gas Facilities in California

Lori Smith Schell, Ph.D., ERP, Empowered Energy Brendan Shaffer, M.S., UC-Irvine Professor Scott Samuelsen, UC-Irvine

39th IAEE International Conference
Bergen, Norway
21 June 2016

Advanced Power and Energy Program

Motivation

- Wastewater treatment plants ("WWTPs") and landfill gas ("LFG") facilities naturally produce significant quantities biogas (40-60% methane)
- Methane is a potent greenhouse gas ("GHG") that has a 100-year Global Warming Potential ("GWP")
 21 times greater than carbon dioxide ("CO₂")
- California committed to reduce CO₂ emissions to 1990 levels by 2020 under AB 32
 - By Executive Order, California further committed to 80%
 CO₂ reduction below 1990 levels by 2050
- California has 303 WWTPs & 314 LFG facilities
- Biogas capture and use from WWTPs and LFG facilities necessary to meet CO₂ reduction goals.

Strong Regulatory Support for Biogas Use

AB 32: Requires carbon reduction in all sectors; the proposed cap and trade system may elevate demand for biogas credits

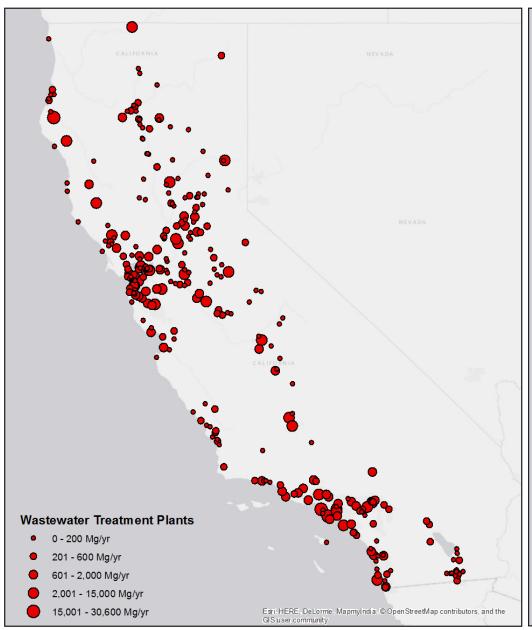
RPS: Renewable Portfolio Standard requires 33% renewable electricity generation by 2020

LCFS: Low Carbon Fuel Standard requires carbon intensity of vehicle fuels to be reduced over time with specific goals in 2020

CAFE: Corporate Average Fuel Economy requires automakers to improve the average fuel economy of their fleets

SB 1505: Requires 33% of hydrogen vehicle fuel to be generated renewably

SB 1122: Requires investor owned utilities to procure 250 MW of new small biopower


ZEV: Zero Emission Vehicle Mandate requires automakers to market zero emission vehicles; one compelling option is the hydrogen fuel cell vehicle. Combined with SB 1505, this is potentially a large end-use of biogas

EPA National Ambient Air Quality Standards require

NAAQS: improvements in air quality in several regions of California

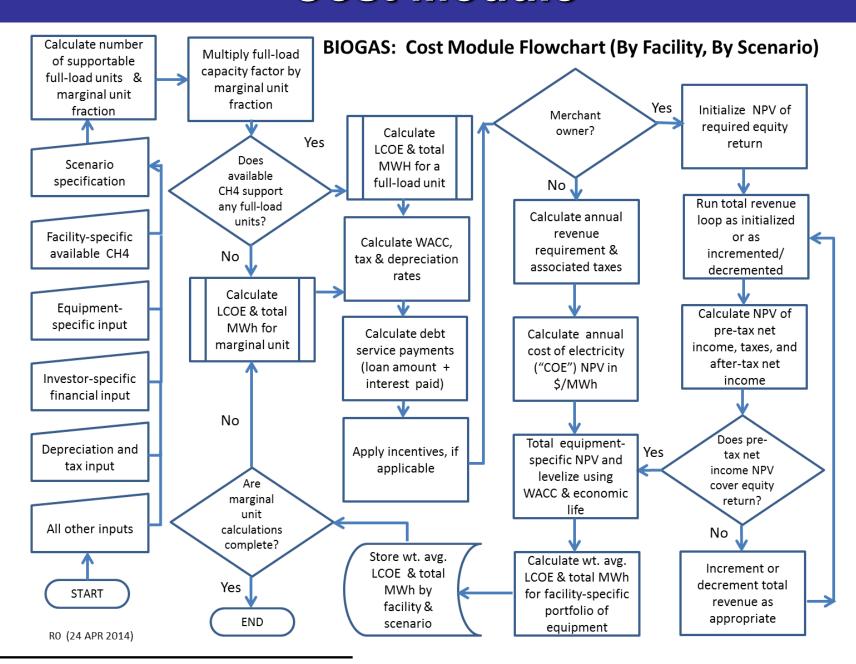
Source: California Energy Commission, March 2015, Air Quality and Greenhouse Gas Emissions Impact Assessment from Biomass and Biogas Derived Transportation Fuels and Electricity and Heat Generation, CEC-500-2016-022, Prepared by Advanced Power and Energy Program, p. 7.

California: 303 WWTPs & 314 LFG Facilities

Utilization Scenarios

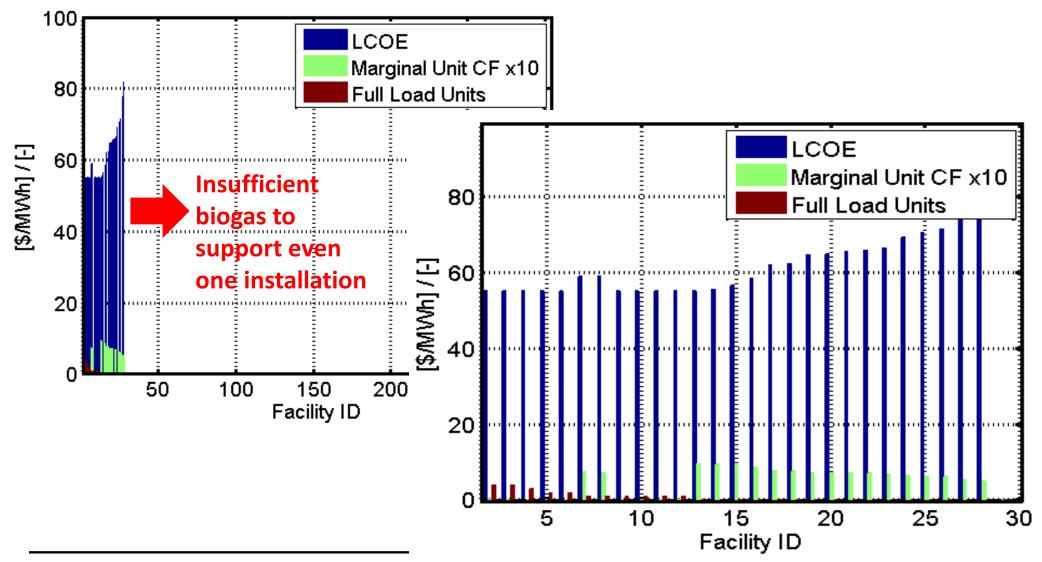
Scenario 1	•	Onsite combined cycle combustion
Scenario 2	•	Onsite reciprocating engine
Scenario 3	•	Onsite reciprocating engine combined heat and power
		system or onsite combined cycle system if available
		biogas would support 3 MW of combined cycle capacity
Scenario 4	•	Onsite micro turbine combined heat and power system
		or onsite combined cycle system if available biogas
		would support 3 MW of combined cycle capacity
Scenario 5	•	Onsite fuel cell combined heat and power system
Scenario 6	•	Onsite fuel cell combined heat and power system or
		onsite combined cycle system if available biogas would
		support 3 MW of combined cycle capacity
Scenario 7	•	Onsite fuel cell tri-generation system (power, heat, and
		hydrogen production)
Scenario 8	•	Onsite Compressed Natural Gas (CNG) production
Scenario 9	•	Onsite Liquefied Natural Gas (LNG) production
Scenario 10 • Pipeline injection of biom		Pipeline injection of biomethane
		(Sized for 1 million scfd of available biomethane)
Scenario 11	•	Pipeline injection for central CNG production
Scenario 12 • Pipeline injection for com		Pipeline injection for combined cycle electricity
		generation
Scenario 13	•	Onsite direct-fired boiler
Scenario 14	•	Onsite hydrogen production using steam methane
		reformation (SMR)
Scenario 15	•	Onsite microturbine
Scenario 16	•	Onsite gas turbine combustion

Economic Module: Input Parameters

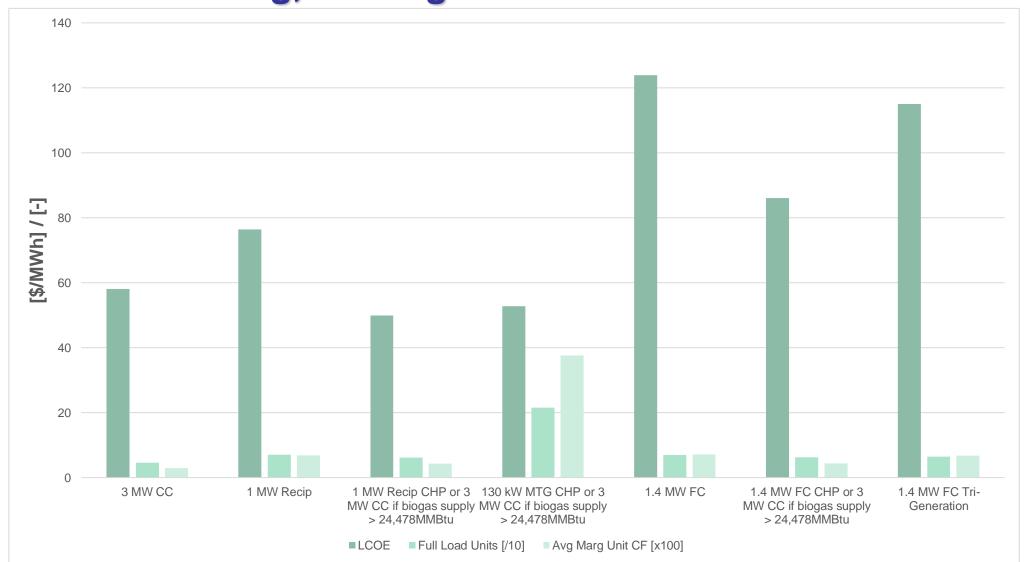

	48	49	50	51	52	53	54	55	56	57	58	59
	1.06 MW Recip	130 kW Microturbine	Small GT (5.5MW)	3 MW Conventional Combined Cycle (CC)	1.4 MW Fuel Cell	Heat Recovery Unit (Marginal	H2 Production (FC; Marginal Impact Only)	Natural Gas Boiler	Onsite CNG Production	Onsite LNG Production	Onsite SMR (500 kg H2/ day)	Pipeline Injection
1 Gross Capacity	1.06	0.13	5.5	3	1.4	1	0.2775	2.1	0.61	0.256	0.82	12.2
2 Annual Capacity Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
3 Instant Cost (\$/kW)	1900	3800	2400	1500	3300	50	1830	40	450	600	1450	305
4 FOM (\$/kW-yr)	30	20	25	14.44	150	3	90	5	25	30	10	20
5 VOM (\$/MWh)	18	22	12	15	10	1	0	1	15	20	25	20
6 HR (MMBtu/MWh)	11.221	13.5	12	7.85	8.06	0	5.2177	3.412	3.412	3.412	11.919	0
7 HR Degradation	0.0024	0.0024	0.001	0.0024	0.009	0.05	0.009	0.05	0.0024	0.0024	0.0024	0.0024
8 Capacity Degradation	0.0024	0.0024	0.001	0.0024	0.009	0.001	0.009	0.001	0.0024	0.0024	0.0024	0.0024
9 Debt Term (Yrs)	12	12	12	12	20	10	20	10	12	12	10	20
10 Economic Life (Yrs)	20	20	20	20	20	20	20	20	20	20	10	20
11 Federal Tax Life (Yrs)	20	20	15	20	10	10	10	15	20	20	20	20
12 State Tax Life (Yrs)	20	20	15	20	20	15	20	15	20	20	10	20
13 Ad Valorem Tax Rate	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098	0.01098
14 Annual Starts	25	25	150	25	4	0	0	0	0	0	25	0
15 Start-Up Fuel (MMBtu/MW)	2.8	2.8	2.8	2.8	10	0	0	0	0	0	2.8	0
16 Plant Losses	0	0	0.034	0	0.0693	0	0	0	0.0693	0.0693	0	0.0693
17 TX Losses	0	0	0	0	0	0	0	0	0.033	0.0925	0	0.033
18 Transformer Losses	0	0	0	0	0	0	0	0	0	0	0	0
19 TX Cost (\$/MWh)	0	0	0	4.3	0	0	0	0	0	0	0	0
20 Fuel Type	1	1	1	1	1	7	0	8	1	1	1	6
21 GDA Eligibility	0	0	0	0	0	0	0	0	0	0	0	0
22 CSI PBI Eligibility	0	0	0	0	0	0	0	0	0	0	0	0
23 Ownership Type	0	0	0	0	0	0	0	0	0	0	0	0
24 Annual Starts	25	25	150	25	25	0	25	0	0	0	0	0
25 CO2 Emission factors (tons CO2/MMBTU fuel)	0.0585	0.0585	0.0585	0.058	0.0585	0	0.0585	0.0585	0.0585	0.0585	0.0585	0.0585
26 CO2 released (tons CO2)	0	0	0	0	0	0	0	0	0	0	0	0
27 Renewable Resource Percent	0	0	0	0	0	0	0	0	0	0	0	0

Power, Heat, Transportation Fuel Potential

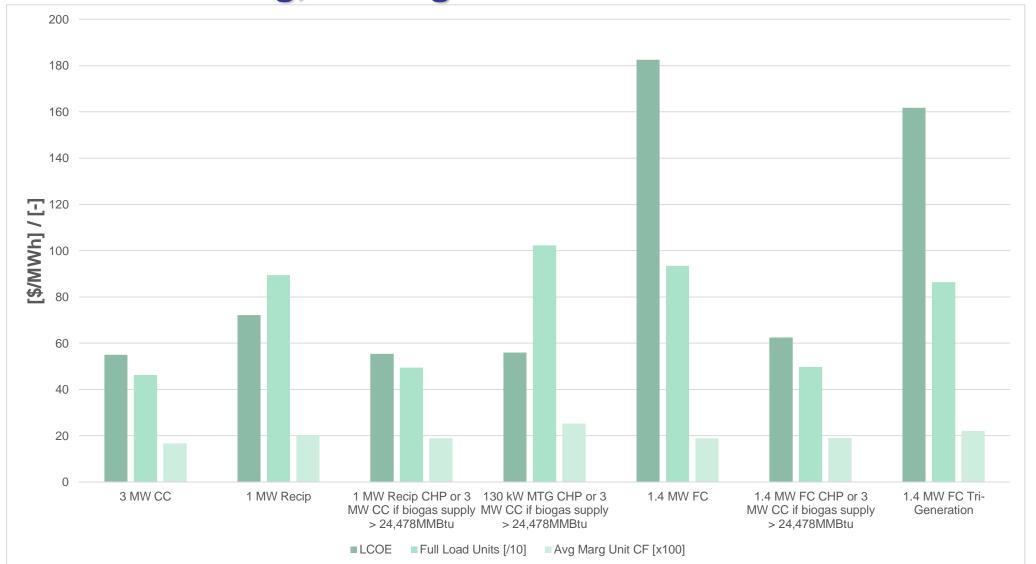
		Land	dfills		Wastewater Treatment Plants					
Utilization Scenario	Additional MW _e Capacity	CNG (Mg)	LNG (Mg)	H2 (Mg)	Additional MW _e capacity	Heat Capacity (MW _{th})	CNG (Mg)	LNG (Mg)	H2 (Mg)	
1	815				69					
2	590				69	76				
3	883				101	27				
4	917				132	45				
5	621				85	46				
6	875				104	16				
7	687			105,024	78	34			16,348	
8		932,300					189,685			
9			862,341					178,013		
10	923				184					
11		918,317					186,839			
12	923				171					
13	579				94					
14				606,428					85,253	
15	575				90	44				
16	258				24	28				

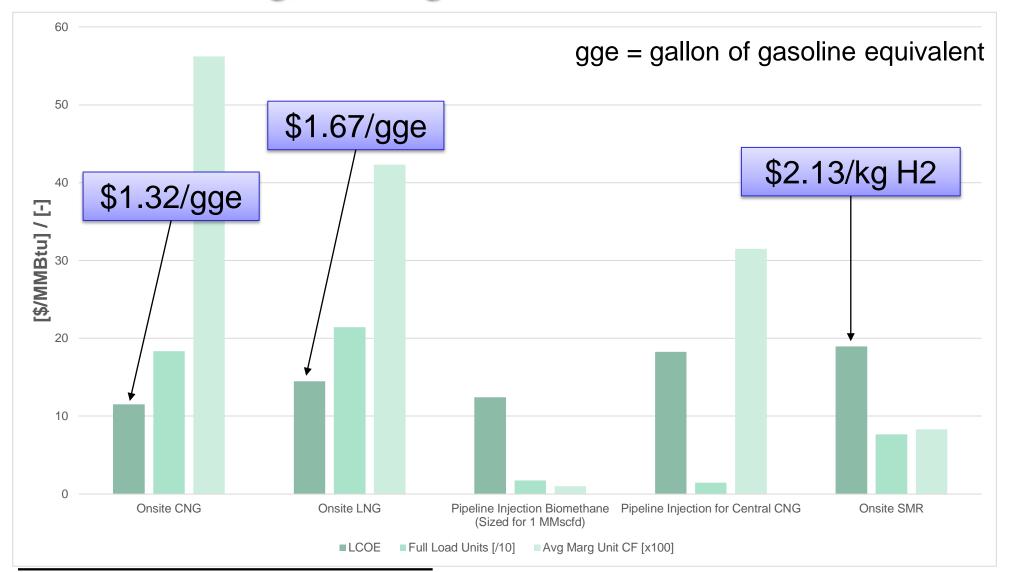

Mg = megagram = 1,000,000 grams = 1,000 kilograms = 1 metric tonne = 2,200 pounds.

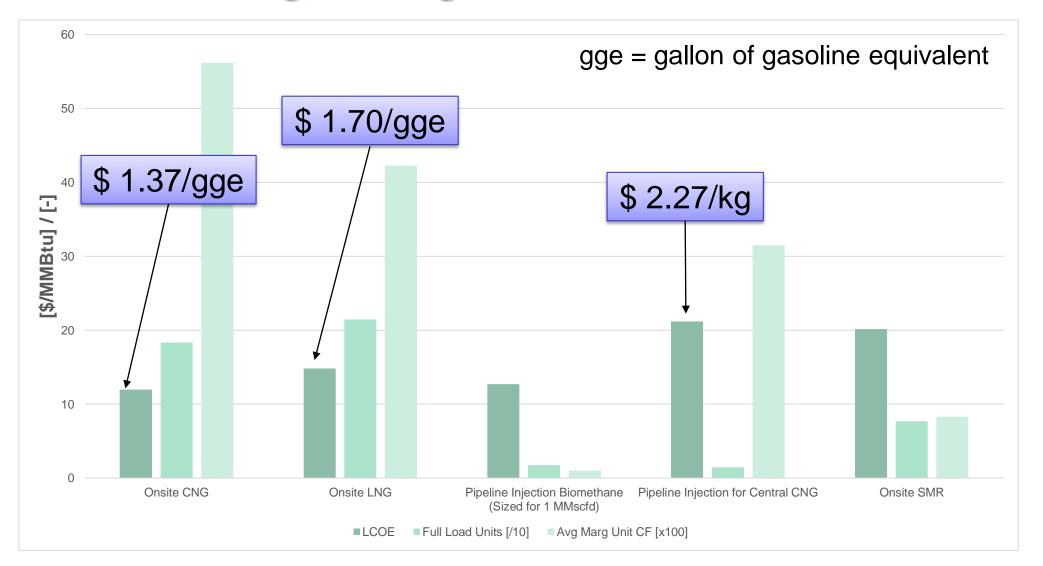
Cost Module



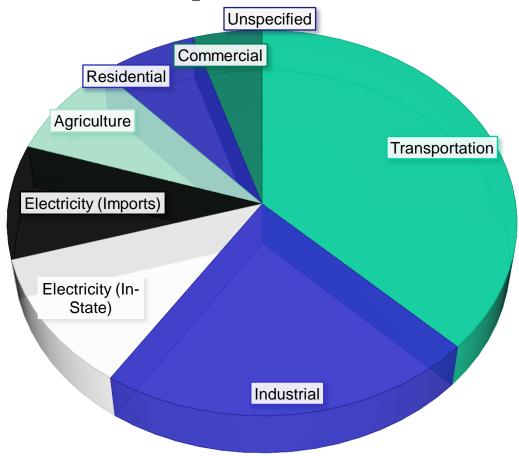
WWTPs: Power Generation Results


Utilization Scenario 1: 3 MW Combined Cycle

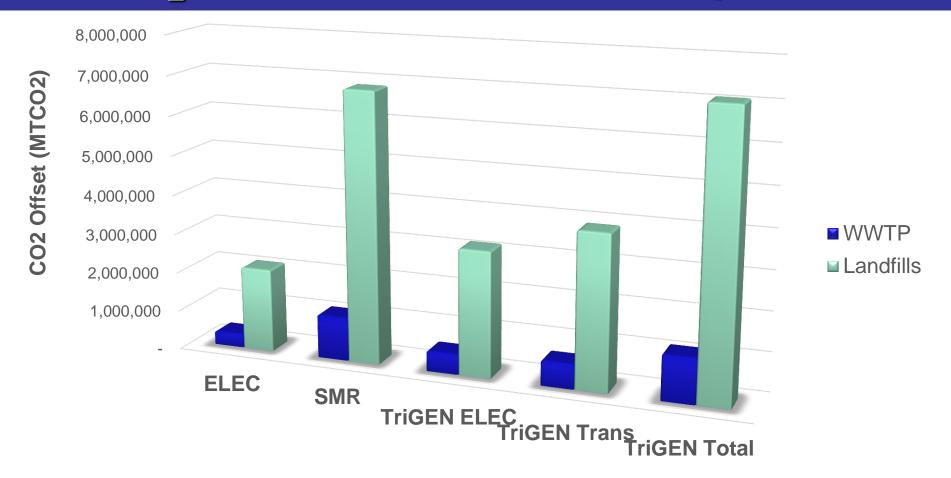

WWTPs: Power Generation Results


LFG Facilities: Power Generation Results

WWTPs: PL Injection & H2 Utilization



LFG Facilities: PL Injection & H2 Utilization


California: CO₂ Emissions by Sector

CA: CO₂ EMISSIONS SHARE BY SECTOR

- Most CO₂ emissions are from the transportation sector
- Thus, target offsetting CO₂ emissions in this sector.

CO₂ Emissions Offset Comparison

- Offsetting conventional transportation fuels alone has large benefit in offsetting CO₂ emissions
- Tri-generation (i.e., power + heat + hydrogen) combines transportation and electricity sector CO₂ reductions.

Conclusions

- Lowest power generation LCOE results from:
 - 1 MW reciprocating engines + CHP for smaller facilities
 - 3 MW combined cycle plants for larger facilities
- LCOE increases as available biogas decreases due to low capacity factor of marginal unit
 - Most significant impact when a single unit is installed
- Onsite transportation fuel production and use is more economical than centralized fuel production
 - CNG most economical for both WWTPs and LFG facilities but H2 provides greater CO₂ emissions reductions
- Onsite transportation fuel production and use has more air quality benefits than using biogas for power generation.

Author Contact Details

Lori Smith Schell, Ph.D., ERP
Empowered Energy
+1 (970) 247-8181
LSchell@EmpoweredEnergy.com

Brendan Shaffer, M.S.
University of California-Irvine
+1 (949) 444-3761
bps@apep.uci.edu

Professor Scott Samuelsen
University of California-Irvine
+1 (949) 824-5468
gss@apep.uci.edu